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.éw ABSTRACT: Bodies suspended in fluids move so as to be visible

THE MOVEMENT OF PARTICLES?SUSPENDED IN FLUIDS AT REST
WﬂICH IS POSTULATED BY THE MOLECULAR-KINETIC THEORY OF HEAT
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- . under the microscope if they'are large enough. The magnitude

-  0f this heat-induced movement, not yet experimentally observed,
- is calculated.

~ /549‘
In this paper it is to be shown that in accordance with the molecular-kinetic .

theory of heat, bodies of microscopically visible size suspended in fluids must,

in consequence of the molecular movement of heat, execute movements of such mag-

nitude that those movements can easily be detected with a microscope. It is

possible that the movements to be dealt with here are identical with the so-

called "Brownian molecular movement'; the data available to me concerning the

latter is so imprecise, however, that I was unable to form any judgment about it,

If the movement to be treated here, together with the conformity to law
‘expected of it actually can be observed, then classical thermodynamics even for
microscopically distinguishable spaces are no longer to be regarded as precisely
valid and an exact determination of true atomic size is then possible. If con-
versely, the prediction of that movement were to prove to be incorrect, a grave

argument against the molecular-kinetic conception of heat would thereby be a
reality. ' - ' ’ '

§1. The Osmotic Pressuré Ascribable to Suspended Particles

Let z moles of a nonelectrolyte be dissolved in partial volume V* of a

_ fluid of total volume V. If volume V* is separated from the pure solvent by a

. wall permeable to the solvent but not to the dissolved substance, then that wall/SSO

is acted upon by so-called osmotic pressure which, in the case of suff1c1ent1y
large values for V*/z, satlsfles the follow1ng equation:
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If, on the other hand, small suspended bodies are present in partial volume
V* of the fluid instead of the dissolved substance, bodies which likewise cannot -

. pass through the wall permeable to the solvent, then, according to the classical

theory of thermodynamics--at least when neglecting the gravitation of no interest

‘to us here--one does not have to expect that a force is acting on the wall. That

*Numbers in the margin indicate pagination in the foreign text.



1s because, according to the usual conception, the "free energy' of the system g
does not seem to depend upon the position of the wall and the suspended bodies
but only on the total masses and qualities of the suspended substance, the f
fluld and the wall, as well as upon pressure and temperature. To be sure,

5 energy and entropy of the boundary surfaces (capillary forces) would still be
taken into consideration for computing the free energy. We can neglect them,
however, as changes in size and nature of the contact surfaces may not occur

in the case of the positional changes of the wall and of the suspended bodies
%to be considered. ,

ol From the standpoint of the molecular-kinetic theory of heat, however, one
comes to another conception. According to that theory, a dissolved molecule
differs from a suspended body solely due to size, and one does see why a number
‘of suspended bodies should not be corresponded to by the same osmotic pressure

as the identical number of dissolved molecules. One will have to assume that, '
in consequence of the molecular movement of the fluid, the suspended bodies exe-
cute a disordered movement in the fluid, albeit a very slow one. If they are
prevented by the wall from leaving volume V*, they will exert forces on the wall,
just like dissolved molecules. Thus, if n suspended bodies are present in volume
V*, i.e., n/V* = y per unit of volume, and if neighboring ones among them are
sufficiently far removed from one another, there will be a correlation to them
on the part of an osmotic pressure p of the following magnitude:
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In this, N denotes the number of actual molecules contained in a mole. In the
next section it is to be shown that the molecular-kinetic theory of heat really
leads to that enlarged conceptlon of osmotic pressure.

§2., Osmotic Pressure from the Standpoint of the Molecular-Kinetic Théory of Heat!

If Py»> P, ... Py are state variables of a physical system which determine

ﬁerfectly the momentary state of same (e.g. the coordinates and'velocity compon-
ents of all atoms in the system), and if the complete system of variation equa-
tions of those state variables of the form -

e e were = PO -
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~TIt is presupposed in this section that the author s papers on the fundamentals
of thermodynamics are familiar (¢f. An. d Phys. 9, p. 417, 1902; 11, p. 170,
-1903) . An acquaintance with those papers, as well as w1th this sectlon of the ,
‘present paper, can be dispensed with for an appreciation of the results of the °
present paper.
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In this, T denotes absolute temperature; E the energy of the system, E energy as
a function of P, The integral is to be extendéd over all value combinations

of pk)compatible with the postulates of the problem. « is connected with the

‘aforementioned constant N through the relation 2 kN =

R. For free energy F,
therefore, we obtain

R R T
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We can imagine a fluid enclosed in volume V; in partial volume V* of V let /552
there be n dissolved molecules, or suspended bodies, which are held in volume V*
by a semipermeable wall; let the integration limits of integral B occurring ih
the expressions for S and F be influenced thereby. Let the total volume of the
dissolved molecules, or suspended bodies, be small as opposed to V*, In line

with the aforementioned theory, let this system be completely represented by
state variables Py---Py

If, now, even the molecular picture were established down to all details,
the evaluatlon of integral B would nevertheless present such difficulties that
there could scarcely be any thought of an exact computation of F., Here, however,
we only need to know how F depends upon the magnitude of volume V*, in whlch all

dissolved molecules, or suspended bodies (called "particles" for short below),
are contained.

We call x;, y;, zi the reétangularﬁcoordihates of the center of mass of the

‘»flISt article, x,, Y., z, those of the second, etc., x n’ Yn® Zn those of the
P 2> Y20 %2

. small parallelepiped-shaped domains dxidyldz dx dyzdz

last particle, and give for the centers of mass of the partlcles the infinitely
..dxdy dz_, all of

2° n‘n n

which let be situated in V*, Let there be sought the value of the integral

occurring in the expression for F, with the restriction that the particle centers

of mass lie in the domain just a551gned to them. That integral, can in any case,
be brought to the form

dB da:ld./1 d.J na [
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1n which J is independent of dxldy1 etc., as well as of V*, i.e., of the p051t10n

of the semipermeable wall. J. is, however, also 1ndependent of the speC1al choice
of positions of the center-of mass domains and of the value for V*, as is to be
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| shown immediately. If, namely, there be given a second system of infinitely

‘Ismall domains for the particle centers of mass and denoted by dx' 1dy' dz! 1°

,dx dy'2d2'2 Ldx! dy' dz! 0’ wh1¢h domalns may differ from those originally

glven only due to thelr p051t10n but not their magnitude, and all of Wthh are
likewise contalned in V¥, then, analogously.
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From the molecular theory of heat given in the papers cited, however, it
cannot be easily concluded! that dB/B or dB'/B is equal to the probablllty that,
at a point of time taken arbitrarily, the partlcle centers of mass are in the
domains (dx ..dz ) or in the domains (dx' .dz! ). If, then, the movements

of the indiv1dual particles are (with suff1c1ent approximation) independent of
one another, the fluid homogeneous and no forces are acting upon the particles,
then, given equal magnitude of the domains, the probabilities proper to the two
domain systems must be equal to one another w1th the result that

applies. From this and from the last found equation, however, it follows that

J J"”

It is thus shown that J depends upon neither V* nor x

cenZpe Through
integration one cbtains
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énd, from that,
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It has been shown through this analysis that the existence of osmotic pres—
sure is a consequence of the molecular-kinetic theory of heat, and that, in ac-
cordance with that theory, dissolved molecules and suspended bodles of an equal «

.number behave perfectly alike with respect to osmotlc pressure in the case of -

-great dllutlon.

1A, Einstein, Ann. d. Phys. 11, p. 170, 1903.



-"§3.?'%heb}wafﬂdiffusipn of Small Suspended Spheres

Let suspended pafticles be irregularly distributed in a fluid. We in-
. tend to investigate the dynamic state of equilibrium of those particles, on
..the premise that the individual particles are acted upon by a force K which

- depends upon place but not upon time. For the sake of 51mp11c1ty, let it be
- assumed that the force everywhere has the direction of the X-axis.

Let Vv be the number of suspended partlcles per unit of volume; thus, in
the case of thermodynamic equilibrium, v is such a function of x that the
~variation of free energy vanishes for any virtual displacement Sx of the

suspended substance. Thus, one has

S F=8D—T58=0.

Let it be assumed that the fluid has the cross section 1 perpendicular to the
. X-axis and is bounded by planes x = 0 and x = Z. One then has
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Ehus,‘the equilibrium condition sought is ' >
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The last equation asserts that equlllbrlum is afforded to force K by osmotic
:pressure forces. -

We employ equation (1) in order to determine the diffusion coefficient
of the suspended substance. We can interpret the dynamic equilibrium state

just considered as the superposition of two processes running 1nversely, -to
w1t

" 1.. a movement of the suspended substance under the effect of force K
‘ act1ng on each 1nd1v1dua1 suspended partlcle,

/554
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2. a diffusion action which is to be understood as a consequence of
dlsordered movements of partlcles due to the molecular movement of heat.
If the suspended particles are 5pher1ca1 (radlus of sphere P) and the \
fluid has a coefficient of frlctlon k, then force K imparts the individual
partlcle [51c] with velocity!.

S enkP]
arld N W
V. 6nkP
“
j“partlcles pass.through the cross- sectlonal unit per unit of t1me

: If, furthermore, D denotes the diffusion coefficient of the suspended
;wsubstance and u the mass of a particle, then, due to diffusion,

s .Da(‘“') grams

~-or
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. particles pass through the cross-sectional unit per time unit. Since dynamic
"/ equilibrium is to prevail, there must be:

L rHK'v_:\ ar —
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; From the two conditions (1) and (2) found for dynamic equlllbrlum, one
Aycan compute the diffusion coefficient. One obtalns

- ‘4 ) RT ) 1
'D‘_ N Gn/»P
' Thus, the diffusion coefficient of the suspended substance depends -- besides
‘upon universal constants and absolute temperature -- only upon the coefficient /55¢

of frlctlon of the fluid and upon the size of the suspended particles.

“;1 Cf., for example, B. G Klrchhoff Vorlesungen hber Mechanlk 26 Vorlesung
,[Lectures on Mechanics, 26. Lecture #4]



54; The Dlsordered Movement of Partlcles Suspended in a Fluld and
Their Relation to Diffusion

We now pass over to investigating more pretisely the disordered movements

which, caused by the molecular movement of heat, give rise to the diffusion
( 1nvest1gated in the last section.

It must manifestly be assumed that -each individual particle executes a
movement which is independent of the movement of all other particles; also,
the movements of one and the same particle in various time intervals will
have to be understood as actions independent of one another, so-long as we
-.do not imagine those time intervals as selected too small.

Let us now introduce into the study a time interval t which is very

" small compared to observable time intervals but still so large that the

movements executed by a particle in two successive time intervals Tt are to
. be understood as occurrences independent of one another.

Now let n suspended particles be present in a fluid as a whole. In a
time interval T the X-coordinates of the individual particles will be en-
~larged by A, whereby A has a different (positive or negative) value for each
particle. A certain frequency law will apply to A; the number dn of the
particles which experience in time interval T a dlsplacement lying between
A and A + dA will be expressible through an equatlon of the form

whereby

1and $ is different from zero only for very small values of A and fulfills
X kthe condition

A -

- We will now investigate how the diffusion coefficient depends upon ¢,
~again restricting ourselves to the case that the number v of particles per
unit of volume depends only upon x and t.

Let v = f(x,t) be the number of particles per unit of volume; we compute

the distribution of particles at time t + t from their distribution at time t.

"From the definition of function ¢ (A}, there is easily derived the number of

‘particles which at time t + T are situated between two planes =- with
abscissas x and x + dx -- perpendlcular to the X-axis. One obtains
; e ,

e t)d.z ~dx ff(z + Ap(d)d 4.

i, B d=-oo
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Sinme T is very small, however, we can now set : v

,_'f(x,.t+r) f(z t)+r 27, i

8 QFurthermOre, we expand f{x + A,t) by powers of A:

0 e i e i gy C ey

2 1 . & . e
f(~+A t)-—f(a, t)+4 af(x' q+ ;f: agf:_'t).. ..»..Vto infinity

"

We can undertake this expansion below the 1ntegra1, inasmuch as only very
small values of A contribute something to said integral. We obtain:

i

+oo

f+',3 =l f¢(4>d4+ £ Aso(A)dA , -
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In the right member the second, fourth, etc. term vanishes on account of
¢(x) = ¢(-x), whereas, of the first, third, fifth, etc. term, each succes-
sive one is very small as opposed to the preceding one. We obtain from this
" equation, taking into account that

+00 ‘ :
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and taking only the first and third term of the right member into account:

..... § af ' f .

e o e A

‘-~ This is-the familiar d1fferent1a1 equatlon for dlffu51on and one recog-
nizes that D is the coefficient of diffusion. -

Another important consideration can be joined to this development. We .
have assumed that the individual particles are all relative to the same co-
ordinate system. That is not necessary, however, inasmuch as the movements
of the individual particles are independent of one another. We now want to
relate the movement of each particle to a coordinate system whose origin co-

‘incides with the position of the center of mass of the particle concerned

s



~at time t = 0, with the difference that now 'f(x,t)dx denotes the number of

~ particles whose X-coordinates  [sic] has grown from time t = 0 to time t = t

- by a magnitude which lies between x and x + dx. In this case, too, function
. f thus changes in accordance with equation (1). Furthermore, for x .0 and
© ' t = 0, there must manifestly be ' i

sy St g e
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;;The problem, which coincides with the problem of diffusion from one point
" (neglecting the interaction of the dlffu51ng particles), is now determined
. to perfection mathematlcally. its solutlon is:

. . 1 2t ”

i b : ' A > T2

: 3

‘.A - ; t

- . /K = V4 D Vi

}w The frequency distribution of the positional changes occurring in an
.arbitrary time t is thus the same as that of the accidental errors, which /55

- ‘was to be suspected. Of significance, however, is how the constant in the

. exponent is connected with the diffusion coefficient. Now, with the help of

- that equation, we compute displacement Ay in the direction of the X-axis that
a particle experiences on the average, or -- expressed more prec1se1y --

~the root of the arithmetic mean of the squares of the displacements in the

F ;dlrectlon of the X-axis; it is

e Vv,

The mean dlsplacement is, therefore, proportional to the square root
-of the time. One can easily show that the root of the mean value for the
~squares of the total displacements of the particles has value AfJ_

}w §5. Formula for the Mean Displacement of Suspended Particles.
L e ] A New Method for Determining the True Size of the Atoms.
In Section 3 we found the following value for the diffusion coefficient
. D of a substance in the form of small spheres of radius P suspended in a
fluid: -

V:‘bl’. \ . _Rf 1_-1
W _‘D“: N 6nkP

_ In Section 4, furthermore, we found the following for the mean value of the
- displacements of the particles in the direction of the X-axis in time t:

. et e ol

. . )’s= 2.D_t- ’



By elimiﬁating>D, we obtain
" “ffh 31:1.15

This equation reveals how A, must depend upon T, k and P

Je We intend to compute how great Ax is for a second if N is set as 6- 10
in accordance with the results of the’ k1net1c theory of gases; let water of
17°C be selected as the fluid (k = 1.35:10"2) and particle diameter be .

- 0.001 mm. One obtains

_ "lz =8 10"5 qm,; ’O,S micron.

/560

Thus, the mean displacement in 1 mlnute would be appr 6 microns.
fe One

Conversely, the relation found can be é p oye t

’lobtalns
; '3 o
¢ ;
(At £ .9
N = i3 3nkl g
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May a researcher soon succeed in settling the questlon ralsed here Wthh

‘15 of 1mportance to, the theory of heat!

Berne, May 1905.

(Recelved May 11 1905.)
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